Química - vol 2 - 3º ano


Caderno do Aluno
ensino médio 3º série
Química
Página 6
Pesquisa Individual -
O projeto concebido há mais de um século, prevê a ligação do Rio São Francisco com outros rios menores da região semi-árida do Nordeste.
pós:Esse projeto tem como objetivo garantir água às populações dessa região e também o desenvolvimento agrícola, comercial e industrial.
contras:Seu início ainda conta com resistência de ambientalistas e da população que temem a morte do Francisco, o maior e mais importante rio da região.

Ambientalistas, geógrafos, biólogos, assistentes sociais e padres se perguntam: qual será o impacto disso para as espécies que hoje vivem nesse rio ou nos rios que receberão a água?

Se houver diminuição das espécies de peixe, o que acontecerá com as populações que dependem deles? A retirada da água pode comprometer a vazão do rio a jusante (ou seja, nas áreas mais próximas da foz)? Se água sumir em áreas onde ela é abundante, o que acontecerá aos que dependem dela?

A idéia de transposição das águas existe desde a época de Dom Pedro II, já sendo vista como única solução para a seca do nordeste. Naquela época não foi iniciado o projeto por falta de recursos da engenharia. Ao longo do século XX, a transposição do São Francisco continuou a ser vista como a solução para o acesso à água no Nordeste.

Página 9

1.sim , por exemplo para que as plantações tenha um bom desenvolvimento o solo não pode estar acido, para que os peixes possam viver adequadamente, a água não pode estará acida. e no nosso sangue tem que estar levemente básico.
2. calcário ou cal
3.dióxido de enxofre (SO2), suco de limão, laranja, vinagre.
4.hidróxido de sódio (NaOH), amônia (NH3), e oxido de sódio (CaO2). são básicas (alcalinas) pois o pH é maior que 7,0.
5. o cloreto de sódio. é neutro pois o pH é 7,0
6. acido sulfúrico (H2SO4). Hcl , gás carbônico e dióxido de enxofre. suas soluções são acidas pois o pH é menor que 7,0
7. neutro pH = 7,0
acido pH <7,0 básico pH > 7,0

Página 11

1. deve existir sal pois este tem em água forma íons que são partículas carregadas de carga elétrica que conduzirão a corrente elétrica.
2.água é apenas água sem qualquer tipo de misturas, como sais que podiam formar íons.no entanto há alguns íons, mais poucos e por isso a água pura é má condutora.
3. explica-se pela auto ionização da água. algumas moléculas de água sofrem ionização formando os íons H+ e OH-
4. porque há equilíbrio químico. apenas uma pequena parte das moléculas sofre ionização.

Página 12


1. o pH diminui quando a concentração de H+ aumentou. e o pH aumentou quando a concentração diminuiu.
2. pH = log [h+]= log= 1/[h+]
3. a chuva mais acida é na cidade B.
cidade A pH= 4[H+] = 1.1,0-3 mol/L
cidade B pH = 3[H+] = 1.1,0-4 mol/L.
a concentração de íons H+ é dez vezes maior na chuva da cidade B
4. Solução acida
pOH (a 25° C) 14 , 13, 12, 11, 10, 9, 8
Solução Neutra
Solução básica
8, 9, 10, 11, 12 , 13, 14 .

Página 13


DESAFIO,
alternativa B.
pois a concentração do suco de tomate e a água da chuva é acida , porque é maior que 1,0.10-6 , e por isso que fica amarelo. e a concentração da água do mar é menor e pos isso que dica azul;
amarelo= acido ; azul= base.
via: 100 Repetentes


 SITUAÇÃO DE APRENDIZAGEM 1


 COMPOSIÇÃO DAS ÁGUAS NATURAIS E USOS DA ÁGUA DOCE




Páginas 3 - 5
1. Nesta resposta espera-se que os alunos explicitem que a água usada para diferentes
   fins não precisa ter a mesma qualidade. Seria interessante que, na discussão, eles
   fossem solicitados a dar exemplos sobre a qualidade requerida da água para
   diferentes fins. O critério de potabilidade da água, discutido no 1o bimestre da 2a
   série, pode ser retomado.
2. Esta questão propõe que os alunos reflitam sobre suas atitudes quanto ao uso da água
   tratada. São exemplos de uso responsável: usar bacias para lavar e enxaguar louças,
   tomar banhos rápidos – de preferência ensaboar-se e esfregar-se com a água
   desligada –, usar sistemas de descargas que sejam econômicos, lavar áreas externas
   somente quando estritamente necessário e utilizar baldes para tal, usar máquinas de
   lavar roupas somente quando a carga estiver completa, entre outros.
3. Nesta questão, os alunos são convidados a sugerir maneiras de reutilização das águas
   levando em conta suas características. Uma possibilidade seria: uso da água
   proveniente da lavagem de roupas em descargas ou para limpar eventualmente
   calçadas sujas quando essa limpeza for imprescindível. Poderiam também pensar em
   coletar a água de chuvas para regar plantas e mesmo para limpeza geral da casa.
   Todos que já sofreram com a falta de água em locais com chuvas abundantes
   conhecem bem esses usos. Neste momento sugere-se uma discussão sobre que
   alterações poderiam ser feitas no sistema de esgotos de uma casa para que a água se
   tornasse mais facilmente reutilizada.
4. Não se espera que os alunos respondam a esta pergunta corretamente. O que se
   pretende é levantar as ideias que eles já possuem a respeito do parâmetro pH. É
   possível que respondam que valores de pH indicam a acidez ou a basicidade de uma
   substância, ou mesmo que respondam que “é alguma coisa que tem a ver com
   ácidos”. Alguns podem não saber nada a respeito, mas, certamente, já ouviram o
   termo na mídia. Sugere-se que se retome esta questão após o estudo da Atividade 1
   da Situação de Aprendizagem 2. Neste momento, os alunos já serão capazes de
   responder que a água distribuída pode apresentar caráter ácido, básico ou neutro.


                                                                                     3
   Após o estudo da Atividade 2, poderão responder que as águas distribuídas podem
   apresentar concentração de cátions H+ entre 3,2 × 10-10 e 1,0 × 10-6.








Páginas 5 - 6


   A Lição de Casa solicita que os alunos apresentem suas opiniões sobre a escassez ou
a abundância de água doce no planeta.


   Alguns alunos podem comentar que a água não é um bem escasso no planeta Terra,
pois nele há disponíveis 39 × 106 km3 em reservatórios de água doce, o que representa
39 × 1015 m3. Como o consumo de água é de 3 210 bilhões m3 por ano (3 210 × 109
m3/ano), e como a restituição de água sem qualidade para o ambiente é de 1 800
bilhões de m3 por ano (1 800 × 109 m3/ano), pode-se considerar que esse seja o consumo
real de água. Logo, a quantidade de água doce deveria bastar, teoricamente, para mais
21 667 anos, caso os seres humanos continuassem a restituir água sem qualidade ao
ambiente, caso a população mundial e o consumo de água não se alterassem e caso as
águas sem qualidade restituídas ao ambiente não contaminassem os reservatórios de
água.


                1 800× 109 m3 ------------------ 1 ano


                39× 1015 m3 -------------------- x anos      x = 21 667 anos


   Como a intenção da Lição de Casa é conscientizar os alunos a desenvolver atitudes
preservacionistas e a aprender a expressar e defender opiniões fundamentadas em dados,
é interessante que todas as ideias sejam acatadas, respeitadas e discutidas, mesmo que
não sejam plausíveis. Alguns alunos podem argumentar, por exemplo, que 21 mil anos
para nós, espécie humana, representam um tempo muito grande. Podem argumentar
que, nesse tempo, a engenhosidade do ser humano dará um jeito de recuperar essas
águas e que, portanto, não há por que temer uma escassez de água. Por esse motivo, os
alunos poderão pensar que a água não precisa ser economizada, usada com
responsabilidade ou mesmo tratada antes de ser devolvida ao ambiente.


   Para confrontar essa ideia, pode-se questionar: será que as águas contaminadas
restituídas não poderiam contaminar e poluir grandes reservatórios naturais, como as


                                                                                    4
águas de lagos e rios? Será que podemos contar com águas encontradas a profundidades
superiores a 800 m? A obtenção dessas águas não é fácil nem barata e, em algumas
circunstâncias, pode ser impossível, dependendo do local a ser perfurado, da estrutura
do solo e da tecnologia disponível. Caso queiram saber mais, os alunos podem ser
orientados a buscar informações sobre preços de perfuração de poços junto a empresas
especializadas.


  Outros alunos poderão levar em conta conhecimentos aprendidos em Geografia e
considerar que a água é um bem escasso para alguns povos, e não para outros, dada a
sua distribuição irregular no planeta. Essas ideias podem ser discutidas e aprofundadas
ao se perguntar se pessoas que vivem onde há água em abundância podem desperdiçá-la
e devolvê-la ao ambiente sem tratamento, e se essas atitudes não comprometeriam a sua
disponibilidade futura. Novamente a questão da contaminação de reservas pode ser
levantada, assim como a questão ética.


  Outra questão relativa à distribuição da água doce no planeta: Será que o gelo polar e
as geleiras podem ser considerados reservatórios de água? Além de estarem localizados
longe dos locais densamente habitados, sua exploração contínua poderia causar
desequilíbrios biogeoquímicos, o que poderia comprometer a vida no planeta. Há
também a discussão sobre a potabilidade da água nas geleiras e sobre a possibilidade de
nelas haver vírus que poderiam ser liberados ao ambiente caso houvesse degelo.


       Essas são algumas possibilidades de respostas e de encaminhamentos de
discussão. Certamente, as respostas dos alunos serão menos elaboradas, mas essa Lição
de Casa pretende permitir que os alunos desenvolvam habilidades de leitura,
interpretação e avaliação de dados, de levantamento de hipóteses e de argumentação
consistente e clara, além de sensibilizá-los em relação ao consumo consciente da água.


  Em “Água hoje e sempre: consumo sustentável”, material produzido para a SEE-SP,
em 2004, pela Imprensa Oficial, há muita informação que pode subsidiar essa discussão.


Página 6


   Em (acesso em: 13 jan. 2010), página da FAO –
Organização das Nações Unidas para a Agricultura e Alimentação, há uma discussão
sobre a gestão sustentável dos recursos hídricos do planeta.


   Em “Água hoje e sempre: consumo sustentável”,há extratos de notícias publicadas
em jornais e livros com informações sobre o uso da água.


   A socialização da pesquisa sobre a transposição do Rio São Francisco visa permitir
uma discussão mais fundamentada dos prós e contras da obra. Não se espera consenso
entre as opiniões; espera-se que os alunos discutam as diferentes opiniões com base em
informações. Referências de sites nos quais podem ser encontradas informações foram
apresentadas nos Cadernos do Professor e do Aluno. A profundidade e o alcance do
projeto e da discussão, assim como sua realização ou não, ficam a cargo do professor,
assim como a orientação para a pesquisa. Como foi explicitado nos Cadernos do
Professor e do Aluno, outros problemas podem ser discutidos.








                                                                                    6
 SITUAÇÃO DE APRENDIZAGEM 2


 ENTENDENDO A ESCALA DE H
                                           P








Páginas 8 - 10
1. Sim. Por exemplo:
   •     É necessário que se controle o pH para o cultivo de diferentes espécies vegetais.
        Esse controle garante uma produtividade maior e plantas de melhor qualidade.
   •    Para a criação de peixes é necessário que se controle o pH da água. Se o pH não
        estiver em um valor adequado aos peixes que estão sendo criados, eles morrerão
        ou não se desenvolverão a contento.
   •     No sangue, o pH deve ficar entre 7,35 e 7,45. Valores diferentes desses podem
        afetar gravemente vários órgãos.
2. Calcário.
3. Matéria orgânica proveniente da vegetação que, ao cair na água, se decompõe
   liberando ácidos. (Esse é um exemplo retirado do texto, mas os alunos também
   poderão citar outros materiais como o limão, a laranja, o ácido muriático etc.)
4. Hidróxido de sódio (NaOH), gás amônia (NH3) e óxido de cálcio (CaO) formam
   soluções básicas. O Texto 3, estudado nessa atividade, informa que soluções com pH
   maior do que 7 são chamadas de básicas.
5. Cloreto de sódio. Essa substância deve ser neutra, pois não alterou o valor de pH da
   água, ou seja, o pH da solução aquosa de cloreto de sódio é o mesmo que o da água
   pura.
6. Ácido sulfúrico (H2SO4), cloreto de hidrogênio (HCl), gás carbônico (CO2) e dióxido
   de enxofre gasoso (SO2) em água formam soluções ácidas. O Texto 3, estudado nessa
   atividade, informa que soluções com pH menor do que 7 são chamadas de ácidas.
7. Soluções neutras são aquelas com pH igual a 7, a 25 ºC. As soluções com pH menor
   do que 7 são ácidas e as com pH maior do que 7 são básicas ou alcalinas.




                                                                                        7
Atividade 2 – entendimento do valor 7 da escola de pH, a 25 ºC, como
neutro, usando as idéias de Arrhenius


Página 11
1. Para responder a esta questão, os alunos deverão relembrar (2a série) que, para haver
     condução de corrente elétrica nas soluções, é necessário que existam íons em
     movimento, ou seja, que haja mobilidade iônica.
2. Sim, mas ela é má condutora de corrente elétrica.
3. Como a água é pura, os íons só podem vir da própria água, mas devem estar em uma
     concentração bastante baixa, dado que a água é má condutora de corrente elétrica.
     Observação: não se espera aqui que os alunos consigam falar em autoionização da
     água e nem quais os íons formados, mas, por meio dos dados discutidos até agora,
     eles poderão perceber que os íons presentes na água pura só podem vir da própria
     água.
4. Em um equilíbrio químico, a reação é reversível e não se completa, coexistindo
     reagentes e produtos no sistema. Se a autoionização é um equilíbrio, então é de se
     esperar que parte dos 20 mols de água não se transformem em íons H+ e OH-.




Entendendo a escala de pH


Página 12
1. Quando aumenta a concentração de íons H+, o pH diminui; e quando esta
     concentração diminui, o pH aumenta.
2. pH = -log [H+]
3. A chuva é mais ácida na cidade B, que tem o pH menor. Nesta cidade, a concentração
     de H+ é dez vezes maior do que na cidade A.
4.


                     Soluções ácidas               Soluções           Soluções básicas
                                                   neutras
             0   1   2    3     4    5     6           7      89       10    11    12 13 14
 pH (a
 25 ºC)
             14 13 12     11    10   9     8           7      65       4     3     2     1   0
pOH(a
25 ºC)


                                                                                         8
Desafio!


Página 13


   A alternativa b. Quando a concentração de H+ em uma solução for igual a 10-6 mol/L,
seu pH será 6. Portanto, o indicador fica amarelo em soluções com pH menores do que
6 (soluções com concentrações de H+ maiores do que 10-6 mol/L).


   Quando a concentração de íons H+ em uma solução for de 2,5.10-8 mol/L, seu pH
corresponderá a 7,6. Portanto, o indicador fica azul em valores de pH maiores do que
7,6 (em soluções com concentrações de H+ menores do que 2,5.10-8 mol/L).


   Assim, no suco de tomate, o azul de bromotimol ficará amarelo (pH < 6), na água da
chuva também ficará amarelo (pH < 6) e na água do mar ficará azul (pH > 7,6).


   É importante discutir com os alunos que não é preciso calcular o log de 2,5.10-8 para
saber a resposta. Basta pensar que esse valor é maior do que 1.10-8; portanto, o pH em
que o indicador fica azul é um pouco menor do que 8. Como a água do mar tem pH um
pouco maior do que 8, o indicador ficará azul.








Páginas 13 - 14
1. É importante incentivar os alunos a escrever com suas próprias palavras as ideias de
   Arrhenius, desenvolvendo assim as habilidades de redação e síntese e permitindo que
   eles próprios verifiquem se essas ideias lhes são claras.
   Os alunos poderão explicitar ideias tais como: o cientista Svante Arrhenius observou
   que diferentes substâncias sofriam dissociação iônica em maior ou menor grau. A
   caracterização de Arrhenius para ácidos e bases deriva desse estudo. Substâncias que
   sofrem dissociação iônica em água produzindo cátions H+ e o ânion correspondente
   são conhecidas como ácidos de Arrhenius. Bases, por sua vez, são substâncias que
   sofrem dissociação iônica em água produzindo ânions OH- e o cátion
   correspondente.
   Substâncias neutras seriam aquelas que não apresentam esses íons (H+ e OH-) em
   solução. De acordo com a teoria de Arrhenius, a água seria uma substância neutra,




                                                                                      9
     nem ácida nem básica, pois, de acordo com a equação de autoionização, a quantidade
     de cátions H+ é igual à de ânions OH-.


2.


                                                         -
                                  Ca2+(aq)    +
     a)   Ca(OH)2(s)                              2 OH (aq) Esta substância possui caráter


     básico, pois em água libera íons OH-.
                                                     -
                                    Na+(aq) + OH (aq) + H2O(l) + CO2(g) Esta substância
     b) NaHCO3(s) + H2O
                                                                 -
     possui caráter básico, pois em água libera íons OH .
                                                             -
                                             H+(aq) + Cl (aq) Esta substância possui caráter
     c) HCl(g)          HCl(aq)
     ácido, pois em água libera íons H+.




Atividade 3 − Transformações entre ácidos e bases: reações de
neutralização e formação de sais


Páginas 14 - 15
1.
     a) Cálculo da quantidade de matéria de HCl
     0,1 mol______ 1000 mL
     x mol __________10 mL
     x = 0,001 mol de HCl
     Cálculo da quantidade de matéria de NaOH
     0,1 mol_______1000 mL
     x mol___________10 mL
     x = 0,001 mol de NaOH
     b) Não há excesso de nenhum dos reagentes; portanto, não haverá “sobra” de íons
     H+ ou OH-, e o pH resultante será igual a 7.
2.
     a) Cálculo da quantidade de matéria de HCl
     0,2 mol ____ 1000 mL
     x mol ________20 mL
     x = 0,004 mol de HCl






                                                                                         10
  Cálculo da quantidade de matéria de NaOH
  0,1 mol________1000 mL
  x mol___________10 mL
  x = 0,001 mol de NaOH
  b) Observando os resultados do item a, percebe-se que existe um número maior de
  mols de HCl do que de NaOH. Como a reação tem a proporção 1:1 entre os
  reagentes, haverá um excesso de HCl que não vai reagir; portanto, a solução final
  será ácida.
  c) Após a reação sobrarão 0,003 mol de HCl em 30 mL de solução (a solução final é
  preparada adicionando-se 20 mL da solução de HCl a 10 mL da solução de NaOH).
  Considerando-se que o HCl está todo ionizado, teremos 0,003 mol de H+ nesse
  volume de solução.
  0,003 mol de H+_____ 30 mL de solução
  x mol____________ 1000 mL de solução
  x = 0,1 mol de H+ seria a quantidade de H+ em um litro de solução, ou seja, a
  concentração da solução final em íons H+ seria de 0,1 mol/L.
  Como pH = -log [H+], então pH = -log 0,1= 1; portanto, pH = 1.
3. Cálculo da quantidade de matéria para o HCl
  0,1 mol______ 1000 mL
  x mol___________10 mL
  x = 0,001 mol de HCl
  Cálculo da quantidade de matéria para o NaOH
  0,3 mol______1000 mL
  x mol_________10 mL
  x = 0,003 mol de NaOH
  Observando os resultados, percebe-se que existe um número maior de mols de NaOH
  do que de HCl. Como a reação tem a proporção 1:1 entre os reagentes, haverá um
  excesso de NaOH em solução. Após a reação, sobrarão 0,002 mol de NaOH em 20
  mL de solução (10 mL da solução de HCl + 10 mL da solução de NaOH).
  Considerando que o NaOH restante está todo dissociado, teremos 0,002 mol de OH-
  nesse volume de solução. Portanto:
  0,002 mol de OH-____ 20 mL de solução
                                                                                11
   x mol____________ 1000 mL de solução
   x = 0,1 mol de OH-
   Como pOH = -log [OH-], então pOH = 1; portanto, pH = 13 porque pH + pOH = 14
   (veja a tabela na página 12 do CA).
4. Como pode ser observado nos exercícios 2 e 3, acontece reação de neutralização, mas
   a solução resultante nem sempre é neutra. O pH da solução resultante vai depender
   da quantidade de ácidos e bases colocados para reagir. Se houver excesso de íons H+
   ou de íons OH-, a solução final poderá ser ácida ou básica, respectivamente.








Página 15
   •   O leite de magnésia tem caráter básico e pode neutralizar parte do ácido
   clorídrico presente no estômago. A reação que acontece no estômago pode ser
   descrita por:
                   Mg(OH)2 + 2 HCl 2 H2O + Mg2+(aq) + 2 Cl-(aq)
   •   O calcário, quando dissolvido em água, tem caráter básico e pode neutralizar
   ácidos presentes no solo, corrigindo seu pH.
                                         CO2 + H2O + Ca2+(aq) + 2 OH-(aq)
            CaCO3 + 2 H2O
   •   O mármore é formado principalmente por CaCO3, que, em água, apresenta
   caráter básico. Os ácidos presentes no vinagre e no limão reagirão com o CaCO3
   formando outros materiais e destruindo o mármore.
                   CaCO3(aq) + 2 H+(aq)  CO2 + H2O + Ca2+(aq)








                                                                                   12
 SITUAÇÃO DE APRENDIZAGEM 3


 COMO SABER AS QUANTIDADES DE PRODUTOS E DE
 REAGENTES QUE COEXISTEM EM EQUILÍBRIO QUÍMICO








Páginas 17 - 18
1. Os alunos poderão ter suas expectativas frustradas, pois irão considerar somente a
   estequiometria das reações. Neste caso, como a concentração de H+ para os dois
   ácidos foi de 0,1 mol.L-1, eles esperariam que o pH final das soluções para os dois
   ácidos fosse 1.
2. O HCl estará mais ionizado, pois apresenta um pH menor, ou seja, mais moléculas de
   HCl se ionizaram formando mais H+.
3. As espécies presentes são HF, H+ e F-. Como coexistem as espécies reagentes e
   produtos, pode-se concluir que o sistema está em equilíbrio.








Página 18


   Espera-se que os alunos construam um pequeno texto com suas próprias palavras e
mencionem que, quanto menor for o pH, maior será a concentração de H+ na solução e,
portanto, mais ácida ela será. Essa quantidade de H+ presente depende da concentração
e da natureza do ácido adicionado à água.




Desafio!


Página 18


   Considerando que apenas 3% das moléculas sofrem ionização, temos uma
concentração de H+ de 0,021 mol/L (0,7 mol.L-1 . 0,03 = 0,021). Como pH = -log [H+],
então pH = -log 0,021 = 1,7.


                                                                                   13
Atividade 2 − Construção empírica da constante de equilíbrio químico


Página 19
1.


                                         [H+(aq)].[H3CCOO-(aq)] /
                      Solução
                                             [H3CCOOH(aq)]
                                                        1,8 . 10-5
                           1


                                                        1,8 . 10-5
                           2


                                                        1,8 .10-5
                           3






2. Pode-se observar que essa relação é constante e chamada de “constante de
     equilíbrio”.
              [ H  (aq )]  [ H 3 CCOO  (aq )]
            
     KC
                     [ H 3 CCOOH (aq )]








Página 20
1. A expressão da constante de equilíbrio para as reações expressas pelas equações
     químicas são:
     H2(g) + CO2(g)            H2O(g) + CO(g)         Kc = [CO(g)].[H2O(g)] / [H2(g)].[CO2(g)]
                                                   Kc = [NO2(g)]2 / [O2(g)].[NO(g)]2
     2 NO(g) + O2(g)            2 NO2(g)
                                               Kc = [H2(g)].[I2(g)] / [HI(g)]2
     2 HI(g)         H2(g) + I2(g)




2. Em 1 litro de água, a 25 oC e 1 atm, as quantidades de íons H+ e OH- que coexistem
     em equilíbrio com a espécie H2O são muito pequenas. Por esse motivo, podemos
     considerar que a concentração da água não se altera e pode ser incorporada à
     expressão da constante de equilíbrio Kc, que receberá, neste caso, o nome de Kw.
     Mais explicações podem ser encontradas no Caderno do Professor, página 29.






                                                                                            14
Atividade 3 − Relação entre o valor da constante de equilíbrio e a
extensão de uma transformação


Páginas 20 - 21
1.
     a)
     I. Kc = [H+(aq)].[HSO3-(aq)] / [H2SO3(aq)]
     II. Kc = [H+(aq)].[F-(aq)] / [HF(aq)]
     III. Kc = [H+(aq)].[C6H5COO-(aq)] / [C6H5COOH(aq)]
     IV. Kc = [H+(aq)].[ClO-(aq)] / [HClO(aq)]
     b) Como as concentrações dos produtos aparecem no numerador da expressão da
     constante de equilíbrio, pode-se dizer que, quanto maior o valor dessa constante,
     maior será a quantidade de produtos. Portanto, o equilíbrio I, que apresenta o maior
     valor da constante de equilíbrio, é o que apresentará a maior extensão no processo de
     formação dos produtos.
2.
     I. Kb = [Li+(aq)] . [OH-(aq)]           Kb = 6,6 . 10-1
     II. Kb = [Na+(aq)] . [OH-(aq)]          Kb = 4
     III. Kb = [CaOH+(aq)] . [OH-(aq)]       Kb = 4 . 10-2
     Novamente percebe-se pela expressão da constante de equilíbrio que, quanto maior a
     extensão da transformação no sentido da formação dos produtos, maior será o valor
     da constante de equilíbrio. Portanto, o equilíbrio II é o que apresenta a maior
     extensão.
     Observação: as substâncias que apareceriam no denominador das expressões estão
     no estado sólido e, por isso, não são escritas nas expressões das constantes de
     equilíbrio.








Página 22
     a)
     Ka = [H+(aq)] . [HSO3-(aq)] / [H2SO3(aq)]
     Ka = [HCOO- (aq)] . [H+(aq)] / [HCOOH(aq)]


                                                                                       15
   Ka = [ClO-(aq)] . [H+(aq)] / [HClO(aq)]
   Ka = [F-(aq)] . [H+(aq)] / [HF(aq)]
   Como as concentrações dos produtos aparecem no numerador da expressão da
   constante de equilíbrio, pode-se dizer que, quanto maior o valor dessa constante,
   maior será a quantidade de moléculas que sofrerão ionização. Portanto, o equilíbrio
   do ácido sulfuroso é o que sofrerá maior ionização, pois apresenta o maior valor da
   constante de equilíbrio.
   b) O ácido sulfuroso apresenta o menor pH. Considerando concentrações iguais
   desses ácidos, apresentará menor pH aquele que tiver uma maior concentração de
   íons H+, ou seja, o que sofrer maior ionização.
                              
         [ H  (aq)].[ HSO3 (aq)]
    Ka 
                [ H 2 SO3 (aq)]
   Substituindo os valores numéricos, temos:
   1,7 . 10-2 = [H+(aq)] . [HSO3-(aq)] / 0,11
   Ou seja: 1,7 . 10-3 = [H+(aq)] . [HSO3-(aq)]
   Como a reação é 1:1 [H+(aq)] = [HSO3-(aq)] = x
    1,7 . 10-3 = x2
   x = 0,04 mol/L = [H+(aq)]
   pH = -log [H+(aq)]= 1,4
   c) O ácido mais forte é o ácido sulfuroso, pois apresentará maior extensão de
   ionização, e o ácido mais fraco é o ácido hipocloroso, pois apresentará menor
   extensão em sua ionização.








1A rigor, aqui deveria-se usar 0,1 – x, sendo que x corresponde às concentrações de H+ e de HSO3- no
equilíbrio. Despreza-se porém este valor, por ser muito pequeno.
                                                                                                       16
     SITUAÇÃO DE APRENDIZAGEM 4


     INFLUÊNCIA DAS VARIAÇÕES DE TEMPERATURA E PRESSÃO
     EM SISTEMAS EM EQUILÍBRIO QUÍMICO




Influência da temperatura


Páginas 23 - 24
                    H+(aq) + OH-(aq)            Kw = [H+(aq)].[OH-(aq)]
1. H2O(l)
2.


                            Kw /mol2.L-2
     Temperatura /                                pH
         o
           C
                          0,11 . 10-14
     0                                      7,5
                          0,30 . 10-14
     10                                     7,3
                          0,68 . 10-14
     20                                     7,1
                          1,00 . 10-14
     25                                     7
                          5,47. 10-14
     50                                     6,6
                          51,3 . 10-14
     100                                    6,1




3. Os alunos deverão concluir que, pela equação da autoionização da água, a [H+(aq)] e
     o [OH-(aq)] são iguais; portanto, a água deverá continuar neutra, em qualquer
     temperatura. Mas, como o pH é definido em função da [H+(aq)], e como essa
     concentração varia com a temperatura, a diferentes temperaturas, a água pura
     apresentará diferentes valores de pH. Neste momento, pode ser novamente reforçada
     a ideia de que o valor da constante de equilíbrio se modifica com mudanças de
     temperatura.
4. Nesta questão, os alunos deverão analisar as equações, as entalpias das
     transformações e os valores das constantes de equilíbrio explicitados na tabela.
     Deverão concluir que, pelo aumento da temperatura, a transformação endotérmica é
     favorecida e, pela diminuição da temperatura, a transformação exotérmica é
     favorecida. Caso apresentem dificuldades, sugere-se que tanto a equação de
     autoionização da água como a expressão de Kw sejam reescritas na lousa. Depois,
     pode ser solicitado que observem os valores de Kw a diferentes temperaturas, por
     exemplo a 0 ºC e a 100 ºC. Os alunos verificarão que, a 100 ºC, Kw apresenta um
                                                                                   17
     valor maior. Analisando a expressão, verificarão que valores maiores de Kw indicam
     maiores concentrações tanto de H+(aq) quanto de OH-(aq) e poderão concluir que a
     reação de autoionização da água, que é endotérmica, é favorecida com o aumento da
     temperatura. Em seguida, pode-se fazer o mesmo para valores menores de Kw. Pode
     parecer óbvio, mas muitos alunos apresentam dificuldades em analisar e comparar
     mais de duas variáveis.
5.
            [CO2 ( g )].[ H 2 ( g )]
     Kc 
            [CO ( g )].[ H 2 O( g )]
     Aumentando a temperatura, aumenta a Kc; portanto, aumenta a concentração de
     CO2(g) e de H2(g). Por esse motivo, o aumento da temperatura favorece a formação
     de CO2(g).
6. Concluindo: o aumento da temperatura favorece a transformação endotérmica de um
     equilíbrio químico e a diminuição da temperatura favorece a transformação
     exotérmica de um equilíbrio.




Questão para sala de aula


Página 25


     A análise da tabela da solubilidade do gás oxigênio em água mostra que o aumento
da pressão, a uma temperatura constante, provoca um aumento na concentração do
oxigênio dissolvido em água. Pode então ser reforçada novamente a ideia de que
mudanças na pressão alteram equilíbrios químicos.








Páginas 25 - 26




                 [CO2 ( g )]
          Kc 
     a)
                  [CO ( g )]
     b) O aumento da temperatura desfavorece a obtenção do ferro metálico, pois, de
     acordo com a tabela, o aumento da temperatura provoca uma diminuição nos valores
     de Kc; logo, a concentração de CO2 será menor. Como a estequiometria da


                                                                                    18
   transformação é de 1:1, para cada mol de CO2(g) formado, 1 mol de ferro metálico
   também se formará. Consequentemente, quanto menor a [CO2(g)], menor será a
   quantidade de ferro formada. Pode-se também inferir que a transformação de óxido
   de ferro II a ferro metálico deve ser exotérmica.








Páginas 26 - 27


   A ideia principal a ser considerada é a da variação da solubilidade em função da
pressão.


   Os alunos poderão responder que, se o mergulhador não levar em conta o tempo de
descompressão e usar todo o ar que carrega consigo durante a exploração do fundo, ele
não disporá de ar para respirar durante a subida, que deve ser feita de maneira planejada
e lentamente. Poderão ainda explicar que a necessidade de uma subida lenta pode ser
entendida ao se pensar que a pressão aumenta à medida que a profundidade vai
aumentando e que a pressão influi no equilíbrio de dissolução de gases em sistemas
aquosos: quanto maior a pressão a que um sistema – no caso, o corpo humano – é
submetido, maior a quantidade de gases que nele pode ser dissolvida. Em grandes
profundidades, um mergulhador expira menos ar do que na superfície, pois uma maior
quantidade de gases se dissolve em seu sangue. Se o mergulhador retornar à superfície
rapidamente, a quantidade de gases que se encontra dissolvida em seu sangue diminuirá
abruptamente; com isso, poderão se formar bolhas no sangue que poderão causar a
morte do mergulhador. Uma subida lenta permite que a pressão diminua lentamente e,
consequentemente, que a solubilidade também diminua lentamente; a subida deve, pois,
ser feita com uma velocidade que permita ao mergulhador expirar o gás em excesso.
Muitas vezes, subir lentamente não basta, sendo necessário que o mergulhador faça
várias paradas de descompressão, para que haja tempo para expirar o excesso de gases
não dissolvidos.


   Informação adicional: o uso do Trimix, mistura que contém gás hélio, permite
tempos de descompressões menores, pois o gás hélio se dissolve muito pouco em
soluções aquosas, mesmo quando submetido a altas pressões. Isso pode ser explicado
pelo fato do hélio ser um gás monoatômico, de pequeno tamanho, com baixo número
                                                                                      19
atômico e muito pouco deformável, o que dificulta o aparecimento de dipolos
instantâneos. Desse modo, consequentemente, as interações interpartículas responsáveis
pela dissolução serão mais fracas.








                                                                                   20
 SITUAÇÃO DE APRENDIZAGEM 5


 COMO O SER HUMANO USA A ÁGUA DO MAR PARA A SUA
 SOBREVIVÊNCIA?








Páginas 28 - 31
1. Os maiores produtores brasileiros de sal são o Rio Grande do Norte (sal marinho),
     Alagoas e Bahia (sal-gema).
2. Sal–gema é o sal obtido por mineração de jazidas terrestres, provavelmente formadas
     pela evaporação de mares pré-históricos, ou ainda a partir de leitos secos de lagos
     salgados. Esse sal é constituído basicamente por cloreto de sódio, mas também
     contém cloreto de potássio e cloreto de magnésio.
3.
     a) Os alunos poderão apontar várias possibilidades de sais formados, levando em
     conta os íons presentes na água do mar, tais como NaCl(s), Na2SO4(s), NaBr(s),
     NaHCO3(s), MgCl2(s), MgSO4(s), MgHCO3(s), MgBr2(s), CaCl2(s), CaSO4(s),
     CaHCO3(s), CaBr2(s), KCl(s), K2SO4(s), KHCO3(s), KBr(s).
     b) O tipo de ligação é iônica.
     c) A análise da tabela permite que os alunos concluam que o sal que poderá
     aparecer em maior proporção é o NaCl, pois os íons Na+ e Cl- são os que aparecem
     em maior proporção molar na água do mar.
4.
     a) O carbonato de cálcio cristalizará primeiro, pois apresenta a menor solubilidade.
     Em seguida, será a vez do sulfato de cálcio, pois apresenta a segunda menor
     solubilidade.
     b) A ordem de precipitação será: carbonato de cálcio (CaCO3), sulfato de cálcio
     (CaSO4), sulfato de magnésio (MgSO4) e cloreto de sódio (NaCl), cloreto de
     magnésio (MgCl2) e, por último, brometo de sódio (NaBr).
     Observação: talvez seja interessante retomar com os alunos o significado do conceito
     de solubilidade. Pode-se fazer um experimento que permita a concretização desse
     conceito. Podem ser pesados 100 g de água e 36 g de sal de cozinha. Vai-se


                                                                                      21
     adicionando o sal à água, e os alunos poderão observar que os 36 g de sal de cozinha
     são dissolvidos em 100 g de água. Ao se adicionar mais sal a essa solução, essa
     quantidade não mais se dissolverá. Pode-se então perguntar: qual foi a quantidade
     máxima de sal que pôde ser dissolvida em 100 g de água? Seria interessante dizer
     que essa quantidade varia com a temperatura, mas que, como a variação é, no caso
     do sal de cozinha, muito pequena, é pouco provável que isso possa ser demonstrado
     (a 20 oC e 1 atm, a solubilidade do NaCl é de 36 g/100 g H2O e a 100 oC é de 39,8
     g/100 g H2O).
     c) Em algumas salinas, os sais presentes na água do mar são separados com base
     nas suas diferenças de solubilidades. Para tanto, é necessário que a água evapore,
     permitindo que os sais se depositem (cristalizem) no fundo do tanque. A salmoura é
     então transferida para outro tanque de evaporação. O sal depositado no fundo dos
     tanques é rico em sais menos solúveis, e a salmoura é rica em sais mais solúveis Para
     se obter um cloreto de sódio mais puro, precisa-se transferir a salmoura para outros
     tanques. Há quem chame a esse processo de “evaporação fracionada”. Juntamente
     com o cloreto de sódio será também obtido o sulfato de magnésio, sal que apresenta
     igual solubilidade em água a 25º C. O sulfato de magnésio será, entretanto, obtido
     em pequena proporção, em decorrência da pequena disponibilidade de íons magnésio
     e sulfato presentes na água do mar (quando comparada à quantidade de íons sódio e
     cloreto).
5.
     a) Espera-se que os alunos reconheçam os processos de dissolução do sal em água,
     a eletrólise e a eletrólise ígnea, a fusão, o processo de Haber-Bosch e o processo
     Solvay. Este último não foi estudado, mas o nome “processo” talvez baste para que
     os alunos o reconheçam como tal. Talvez eles não saibam o que é uma eletrólise
     ígnea, mas a relacionarão à eletrólise.
     b) Os alunos devem apontar o sódio metálico, o gás cloro, o gás hidrogênio, o
     hidróxido de sódio e o carbonato de sódio.
     c) Indústrias que produzem gás cloro, gás hidrogênio, hidróxido de sódio (soda
     cáustica), hipoclorito de sódio, ácido clorídrico, amônia e carbonato de sódio. Estes,
     por sua vez, são matérias-primas utilizadas em indústrias que produzem alvejantes,
     cloretos inorgânicos, plásticos, desinfetantes, peróxidos etc. Dependendo do meio em
     que o aluno vive, ele pode conhecer outras indústrias que não aparecem no
                                                                                        22
   fluxograma e que utilizam matérias-primas obtidas a partir da água do mar. Alguns
   exemplos:
   •   A soda cáustica é utilizada na fabricação de papel, de corantes, de remédios, de
   borracha, de sabões e detergentes, de óleos e gorduras, na metalurgia, no
   processamento do alumínio, na indústria petrolífera etc.
   •   A barrilha (carbonato de sódio) é utilizada na produção de sabões e detergentes,
   de papel, de remédios, de cerâmicas, de corantes, em fotografia e no tratamento de
   água, entre outros.
   •   O gás cloro também é usado na indústria de papel, de solventes, de compostos
   anticongelantes e antidetonantes, de fluidos de refrigeração etc.
   • O hidrogenocarbonato de sódio (bicarbonato de sódio) é usado na produção de
   remédios, de bebidas, de fermento em pó, em extintores de incêndio etc.
   Observação: esta questão busca favorecer a habilidade de leitura e análise de
   fluxogramas.
   d) Essa pergunta foi feita considerando-se que muitos alunos acreditam que cloreto
   de sódio fundido é a mesma coisa que salmoura. Na salmoura, os íons estão
   dissociados ionicamente em água, ou seja, para que a salmoura seja obtida, o cloreto
   de sódio foi dissolvido em água. Já para se obter o cloreto de sódio fundido, o cloreto
   de sódio sólido é aquecido a cerca de 800 oC e não se adiciona água. Talvez seja
   interessante pedir que equacionem os processos e que atentem para as indicações
   “(l)” ou “(aq)”.




       Obtenção do cloreto de sódio fundido : NaCl ( s ) calor  Na  l   Cl  l 
                                                          




                                                 NaCl ( s ) água  Na  aq   Cl  aq 
                                                             
       Obtenção da salmoura :








Página 32
1. Saleiros costumam entupir em dias mais úmidos porque o sal de cozinha pode conter
   impurezas, entre elas o cloreto de magnésio que, por ser higroscópico, absorve a
   umidade do ar provocando o entupimento. O cloreto de magnésio é uma impureza


                                                                                          23
   que pode ser encontrada no sal de cozinha, tanto naquele obtido por evaporação da
   água do mar como no obtido pela mineração do sal-gema ou a partir da salmoura de
   poços.
2. Trabalho individual.








Página 33


   No Caderno do Professor há uma síntese de informações colhidas nos sites indicados
para as pesquisas. Tanto a pesquisa como a discussão posterior das informações
colhidas pelos alunos pretendem que eles conheçam a importância do iodo na
alimentação, assim como problemas que podem ser causados por sua ingestão
deficiente. Pretende-se também que os alunos conheçam a existência de agências
reguladoras, como a Anvisa. Seria interessante que descobrissem que essa agência
mantém uma página na internet com muitas informações e serviços úteis. Outro aspecto
importante seria que, ao consultar as páginas sugeridas, os alunos conhecessem a
existência de uma legislação relativa à composição e à qualidade de diversos produtos, e
não somente relativa ao sal comestível. Saber buscar e interpretar informações
socialmente relevantes é parte importante da formação de um cidadão.




Atividade 2 – Obtenção do hidróxido de sódio, do gás cloro e do sódio a
partir do cloreto de sódio – processos eletrolíticos


Páginas 35 - 36
1. O cloreto de sódio deve ser fundido para que seus íons (Na+ e Cl-), ao se
   liquefazerem, adquiram mobilidade, sem a qual não pode haver eletrólise. Além
   disso, a eletrólise requer íons isolados.
2. No cátodo é obtido o sódio metálico líquido e no ânodo é obtido o gás cloro.








                                                                                     24
                                                                     2








3.








4. Industrialmente, pela eletrólise da salmoura obtêm-se os gases cloro e hidrogênio e o
     íon OH-. Como no processo nada acontece com o Na+, obtém-se o NaOH, a soda
     cáustica, importante matéria-prima para a indústria em geral.
     Quando a eletroquímica foi discutida na 2a série, não foi abordada a questão dos
     potenciais de redução. Dessa maneira, neste Caderno, o aluno não poderá entender
     porque, ao se proceder a eletrólise de uma solução aquosa de NaCl (salmoura), é
     reduzido o íon H+, formando H2(g), e não o Na+, formando o Na metálico. O
     professor pode aproveitar esse momento para tal ensino.








                                                                                     25
                                                       2








   5. Para que os alunos percebam melhor quais os produtos finais obtidos, podem-se
   escrever as equações que descrevem a preparação da salmoura e a gaseificação do
   cloro dissolvido na solução, além das que acontecem pela eletrólise, e sintetizar o
   processo em uma equação que explicite os produtos formados, tal como:








Página 39
1. Os alunos deverão perceber que a adição de amônia é necessária para que possa
   ocorrer a precipitação do NaHCO3, pois, ao ser adicionada ao sistema, reage com os
   íons H+ presentes, diminuindo sua concentração na solução. Como a temperatura é
   constante, a relação entre as concentrações de produtos e de reagentes deve ser
   mantida constante, o que provoca uma alteração no equilíbrio aumentando a
   concentração de HCO3- a ponto de ultrapassar o produto de solubilidade do NaHCO3.
   Dessa maneira, o NaHCO3 se precipita.
2. Normalmente, em indústrias que produzem a barrilha por meio do processo Solvay,
   também é produzida cal pela calcinação do calcário porque, nesse processo, é
   liberado o dióxido de carbono (CO2(g)), que é aproveitado na produção do
   hidrogenocarbonato de sódio (etapa 1 do processo Solvay). A cal viva obtida é


                                                                                   26
   hidratada usando-se a solução de NH4OH (produzida na etapa 2 do processo Solvay).
   Dessa maneira, recupera-se o gás amônia, que será reutilizado nessa mesma etapa. O
   acoplamento de dois processos produtivos otimiza custos operacionais e ambientais,
   pois a amônia é reaproveitada e o CO2(g) produzido na obtenção da cal deixa de ser
   lançado na atmosfera e é utilizado como matéria-prima.








Páginas 40 - 41
   a) O pH do sangue dessa pessoa deve aumentar, o sangue deve ficar menos ácido e
   a pessoa deve entrar em alcalose. A equação que descreve o equilíbrio do CO2 no
   sangue pode ser escrita como:
                        HCO3- + H+
   CO2 + H2O
   Ao respirar muito rapidamente, uma pessoa expira muito CO2(g), diminuindo a sua
   concentração no sangue. As concentrações em equilíbrio se modificarão de maneira a
   tentar manter a relação entre elas (o Kc deve se manter constante a uma temperatura
   constante). Para tanto, mais CO2(g) deverá ser formado e, consequentemente, as
   concentrações de H+ e de hidrogenocarbonato deverão cair. A diminuição da [H+]
   acarreta uma redução da acidez do sangue e um aumento do pH, pois este é calculado
   por pH = -log[H+].
   b) Ao respirar dentro de um saco, a pessoa inalará uma mistura de gases cada vez
   mais rica em CO2. Ao aspirar um ar mais rico em CO2, a concentração desse gás no
   sangue tenderá a aumentar, levando à alteração do equilíbrio, aumentando a acidez
   do sangue.








Páginas 41- 42


   A obtenção do hidróxido de magnésio a partir da água do mar é feita usando-se óxido
de cálcio (cal virgem − CaO). Ele interage com a água e forma ânions OH- em
quantidade suficiente para ultrapassar o limite de solubilidade do Mg(OH)2 , permitindo
assim que este se precipite:


                                                                                    27
                                                    Ca2+ + 2 OH-
                      CaO + H2O  Ca(OH)2


                        Mg2+(aq) + 2 OH-(aq)        Mg(OH)2(s)


   O magnésio metálico é obtido pela eletrólise do cloreto de magnésio. O hidróxido de
magnésio tem caráter básico; logo, ao interagir com o HCl, ocorre uma reação de
neutralização. Essa reação é usada em indústrias para obtenção do cloreto de magnésio.


   Obtenção do MgCl2


   Mg(OH)2(s) + 2 H+(aq) + 2 Cl-(aq) + 4 H2O  MgCl2.6 H2O


   MgCl2.H2O + 5 H2O(g)
   Observação: o cloreto de magnésio é um sal bastante higroscópico; é comercializado
   como sal monoidratado (MgCl2.H2O).
   Obtenção do magnésio metálico (por eletrólise)
                      Mgo+ Cl2
   MgCl2(aq)
   Ou:
   Mg2+ (aq) + 2 e-  Mgo
   2Cl-(aq)        Cl2(aq) + 2 e-




   Na célula, a [Cl2(aq)] vai aumentando à medida que o cloro vai sendo oxidado.
   Alcançado o limite de solubilidade do Cl2(l) (à temperatura em que se está
   trabalhando), ele se gaseifica e é liberado da solução eletrolítica, pois o sistema é
   aberto.
   Cl2(aq)  Cl2(g)








Página 43


   A dessalinização da água do mar pode ser feita por destilação simples. Para tanto, a
solução salina é aquecida, a água é evaporada e o vapor de água é recolhido e
recondensado.








                                                                                     28
Questões para avaliação


Páginas 44 - 46
1. Alternativa c. O pH deverá estar abaixo de 5,2 e acima de 4,5.
2. Como a [H+] é de 10-5 mol.L-1, e como o pH é calculado por pH = - log [H+], então
     pH = - log 10-5 = 5. As trutas suportam um pH mínimo de 5,2 e as carpas, um pH
     mínimo de 5,4, sendo que, abaixo desse pH, esses peixes morrem. Como o pH do
     lago é igual a 5, somente as piabas, que suportam pH até 4,5, irão sobreviver.
3.
     a) Os valores dos pHs são diferentes, pois as forças dos ácidos são diferentes.
     Como se partiu de soluções de iguais concentrações, as seguintes considerações
     podem ser feitas:
     O ácido clorídrico é um ácido muito forte e se ioniza quase a 100%; logo, a
     concentração de [H+] em solução deverá ser de 0,1 mol.L-1. Como o pH é dado pela
     expressão pH = -log [H+], seu pH deverá ser 1.
     Já os ácidos acético e cianídrico devem se ionizar parcialmente, entrando em
     equilíbrio químico. Em cada equilíbrio coexistirão moléculas do ácido não ionizadas,
     cátions H+(aq) e os ânions correspondentes.
     O ácido cianídrico deve ser o mais fracamente ionizado, seguido pelo acético e pelo
     clorídrico. Isso pode ser explicado por seus valores de pH. Como pH=-log[H+],
     quanto maior o pH, menor a [H+] em solução aquosa.
     b) Sim, pois à medida que a base for sendo adicionada, ela reagirá com os íons H+
     em solução para formar água. Dessa maneira, o equilíbrio iônico do ácido será
     perturbado, e mais ácido se ionizará, até que todo ele seja consumido. Como as
     concentrações dos ácidos são iguais, volumes iguais necessitarão da mesma
     quantidade de uma mesma base.
4. Alternativa a. A água pura é neutra, pois ao se autoionizar, produz iguais quantidades
     de cátions H+ e de ânions OH-.
5. Alternativa d. Para alterar o equilíbrio de maneira a aumentar a [Cr2O72-] será
     necessário adicionar um ácido.


      








                                                                                      29
                                     AJUSTES


                 Caderno do Professor de Química – 3ª série – Volume 2






  Professor, a seguir você poderá conferir alguns ajustes. Eles estão sinalizados a cada
página.








                                                                                     30
                                                                      Caso haja a possibilidade, pode ser de-
          valores de pH iguais a 7, soluções alcalinas
                                                                   monstrada a atividade experimental proposta
          apresentam valores de pH maiores que 7 e
                                                                   no 1o bimestre da 2a série.
          soluções ácidas apresentam valores de pH
          menores que 7.
                                                                      A compreensão do experimento ou da si-
     Grade de avaliação da Atividade 1                             mulação pode ser facilitada com questões do
                                                                   tipo: Como explicar as diferenças no brilho da
        Nesta atividade foi ressaltada a importân-                 lâmpada quando o sistema foi conectado a dife-
     cia do controle de pH em diferentes situações.                rentes soluções? O que deve existir nas soluções
     A atividade deve permitir que as ideias que                   para que haja passagem de corrente elétrica?
     os alunos já tinham sobre pH sejam reorga-
     nizadas e que agora relacionem valores de pH                     Primeiro, os alunos deverão lembrar que é
     menores que 7 a substâncias ácidas, valores                   possível a passagem de corrente elétrica em uma
     de pH maiores que 7 a substâncias básicas e                   solução (condutibilidade elétrica), se esta conti-
     valores de pH iguais a 7 a substâncias neutras                ver íons e se estes íons puderem se movimentar.
     (a 25 ºC).                                                    Neste momento se coloca a seguinte questão:
                                                                   De onde podem ter vindo esses íons se a água é
     Atividade 2 – Entendimento do valor 7                         pura? (CA, “Atividade 2”, p. 11).
     da escala de pH como neutro usando
     as ideias de Arrhenius                                           Não se espera que os alunos saibam a res-
                                                                   posta. Eles talvez arrisquem dizer que a água
        Neste momento, busca-se entender porque                    se contaminou com alguma coisa, mesmo sen-
     o valor de pH = 7 da água pura, a 25 ºC, é con-               do informados de que é pura ou, pelo menos,
     siderado neutro. Para tanto, por meio de uma                  bastante pura. Você pode então sugerir que uma
     aula expositivo-dialogada, você poderá reto-                  maneira de obter íons em solução seria se a pró-
     mar a ideia de que a água pura conduz cor-                    pria água se autoionizasse. O modelo atualmente
     rente elétrica. No 1o bimestre da 2a série, foi               aceito explica que as moléculas de água líquida,
     sugerida uma experiência para testar a con-                   em constante movimentação, chocam-se umas
     dutibilidade elétrica da água. Caso não seja                  com as outras e, se esses choques forem efetivos3,
     possível a reprodução do experimento em sala                  algumas ligações entre o oxigênio e o hidrogênio
     de aula, os resultados descritos indicam que                  de algumas das moléculas poderiam se romper,
                                                                   formando os íons H+ e OH-. Tais íons também
     a água pura conduz corrente elétrica, embora
     muito pouco, posto que somente a lâmpada                      têm chance de se chocar, formando novamente
     de neônio se acendeu.                                         uma molécula de água.






         Choques efetivos foram estudados no 1o bimestre da 3a série.
     3








18
                                                                           Química - 3a série - Volume 2








    Dessa forma, as espécies presentes na           água, em um volume qualquer de água, au-
água pura são H+, OH- e moléculas de H2O            toionizam-se: vale a pena frisar que somen-
não ionizadas. Essas partículas coexistem em        te uma pequena quantidade de moléculas se
                                                    autoioniza. Para sermos mais exatos, a 25 oC,
equilíbrio dinâmico, pois a rapidez com que
                                                    a concentração de cada espécie de íons é
os íons se formam é igual à rapidez de for-
                                                    constante e igual a 10-7 mol.L-1, ou seja, exis-
mação de moléculas de água. Se forem ana-
lisadas as concentrações de H+, de OH- e de         tem 0,0000001 mol de H+ e 0,0000001 mol
                                                    de OH - em um litro de água. São quanti-
H2O, estas se mostrarão constantes ao longo
do tempo. Externamente, a impressão que             dades muito pequenas de íons em solução,
se tem é de que a ionização parou de acon-          o que explica a baixa condutibilidade elé-
tecer, pois não se obterá mais H+ nem OH-,          trica da água (só permite que a lâmpada
mas, microscopicamente, as espécies estão se        de neônio se acenda). (CA, “Atividade 2”,
interconvertendo incessantemente e com a            questão 4, p. 11.)
mesma rapidez. Uma representação possível
para isso é:                                           Antes de dar prosseguimento ao estudo,
                v1
                                                    seria interessante que se fizesse uma síntese,
                     H+(aq) + OH- (aq)
       H2O(l)
                                                    junto com os alunos, para que ficasse explíci-
                v2
            (equação simplificada)                  to que a água sofre autoionização, que entra
                                                    em equilíbrio químico, que esse equilíbrio é
    O que deve ficar claro é que existe uma rela-   dinâmico, e que, a 25 ºC, as concentrações de
                                                    cátions H+ e ânions OH- são iguais e corres-
ção proporcional entre as quantidades de molé-
culas que se ionizaram e as quantidades de íons     pondem a 1,0.10-7mol/L.
formados. Deve ser frisado que, apesar de haver
                                                                  v1
                                                                       H+(aq) + OH- (aq)
                                                            H2O
uma proporção constante entre essas espécies,
                                                                  v2
elas coexistem em um equilíbrio dinâmico, ou
                                                       O estudo prossegue com a introdução da
seja, a rapidez com que elas se interconvertem é
                                                    equação que permite o cálculo do pH, usan-
igual e constante.
                                                    do as ideias que o cientista sueco Svante
                                                    Arrhenius apresentou em sua tese de douto-
   Deve ser discutido que esses íons estão
                                                    ramento, em 1889. Sua teoria foi desenvol-
em equilíbrio químico dinâmico com molé-
culas de H2O não ionizadas. Alguns alunos           vida sobre as diferentes condutividades
poderão pensar que todas as moléculas de            elétricas de soluções aquosas. Ele observou








                                                                                                           19
                                                                              Química - 3a série - Volume 2








                 Concentração inicial de ácido
                                                         Concentrações no equilíbrio (mol.L-1)
                     fluorídrico (mol.L-1)
 Experiência
                                                                                          -
                                                                       -(aq)] [H (aq)].[F (aq)]
                                                                                +
                           [HF(aq)]                [HF(aq)] [H (aq)] [F
                                                                 +
                                                                                  [HF(aq)]
      1                     0,1000                  0,0920   0,0079 0,0079        6,8 . 10-4
      2                     0,0100                  0,0077     0,0023      0,0023         6,8 . 10-4
      3                     0,2000                  0,1890     0,0113      0,0113         6,8 . 10-4
                                                      [H+].[F-] / [HF] e a segunda é [HF] / [H+].[F-].
   Analisando os valores das concentrações
das espécies HF(aq), H+(aq) e F-(aq), depois          Nota-se que o valor resultante da relação en-
que o equilíbrio químico é estabelecido, não          tre as concentrações se mantém constante.
se percebe imediatamente uma relação cons-
tante entre elas. Mas, considerando que todas            Os alunos podem ser solicitados, agora, a
as soluções foram feitas a partir de um mesmo         observar um outro exemplo e verificar se as rela-
soluto e que, no equilíbrio, as concentrações         ções entre as concentrações também apresentam
de todas as espécies permanecem constantes,           valores constantes a uma mesma temperatura.
é possível pensar que deve haver uma relação
constante entre as concentrações das espécies            O ácido acético não se ioniza totalmente e
presentes no equilíbrio e que esta não deve va-       entra em equilíbrio químico. Na tabela a se-
riar a uma determinada temperatura.                   guir são apresentadas as concentrações das
                                                      espécies em equilíbrio em soluções aquosas
   A partir dos dados apresentados, várias            preparadas a partir de diferentes concentra-
relações podem ser estabelecidas. Há, po-             ções iniciais de ácido acético a 25 oC.
rém, apenas duas relações possíveis que re-
                                                                              H+(aq) + H3CCOO-(aq)
sultam em números constantes. A primeira é               H3CCOOH(aq)


            Concentração inicial
 Solução     de ácido acético                     Concentrações no equilíbrio (mol.L-1)
                 (mol.L-1)
               [H3CCOOH(aq)]         [H3CCOOH(aq)]         [H+(aq)]             [H3CCOO–(aq)]
 1                0,100                 0,0987                  0,00133               0,00133
 2                0,0100                0,00958                 0,000415              0,000415
 3                0,200                 0,198                   0,00188               0,00188


1. Calcule o valor da relação [H+(aq)].                  Observe que esta expressão permite ava-
             -
   [H3CCOO (aq)] / [H 3CCOOH(aq)] para                   liar a proporção entre as espécies em
   cada solução e complete a tabela a seguir.            equilíbrio.


                                                                                                              27
                                                                           Química - 3a série - Volume 2








de soluções a partir da dissociação de bases,      expressão da constante de equilíbrio Kc, que
essa constante de equilíbrio é chamada Kb.         receberá neste caso o nome de Kw.


   Para se discutir que Kw nada mais é do que         Os cálculos que demonstram tal fato estão
a expressão de Kc na qual não aparece o ter-       apresentados no quadro a seguir. As notações
mo [H2O], pode-se mostrar que em 1 litro de        das concentrações foram expressas tanto em po-
água, a 25 oC e 1 atm, as quantidades de íons      tências de 10 como em números decimais, para
H+ e OH- que coexistem em equilíbrio com a         que os alunos leiam e façam as correspondências
espécie H2O são muito pequenas. Por esse mo-       entre os números. Muitos alunos normalmente
tivo, podemos considerar que a concentração        apresentam dificuldades no entendimento de
de água não se altera e pode ser incorporada à     grandezas expressas em potências.




  Cálculo da quantidade de matéria de água em 1 L de água a 25 oC
     Sabendo-se que a densidade da água a 25 oC é de 1 g/mL, pode-se calcular a massa da água
  contida em 1 litro:
     1g         1 mL
      ?         1 000 mL


     Logo, 1 litro de água corresponderá a uma massa de 1 000 g.
     Como a massa molar da água é de 18 g/ moL,
       18 g          1 mol
     1 000 g            ?


     Logo, em 1 litro haverá ~ 55,5555566 mol de moléculas de água.




   Mesmo cursando a 3a série, por vezes, os alu-   que se trata de um cátion de hidrogênio, ou
nos apresentam dificuldades na compreensão         seja, um átomo de hidrogênio que perdeu seu
de algumas notações químicas. É importante         elétron. Os alunos podem também não saber
que sempre se faça a tradução dos símbolos         se há diferença entre as palavras íons, cátions e
próprios da Química. Por exemplo: ao escre-        ânions. Toda vez que dúvidas surgirem, devem
ver [H+(aq)], deve-se ler “concentração de íons    ser esclarecidas.
H+ em solução aquosa”. Deve-se apontar
cada detalhe das notações, ao se perceber que os      A análise da tabela a seguir pode auxiliar os
alunos não estão conseguindo compreendê-las.       alunos a compreenderem quantitativamente o
Por exemplo, dizer que o uso de colchetes “[ ]”    equilíbrio iônico da água a 25 ºC e o porquê de
indica concentração, que o sinal positivo (+)      se desprezar a [H2O] ao se escrever a expressão
colocado acima e à direita da letra H indica       da constante deste equilíbrio.


                                                                                                           29
                                                                                   Química - 3a série - Volume 2








                                                             f Quais são as substâncias obtidas por ele-
    Em primeiro lugar, lembre-os14 de que ele-
trólises envolvem íons que apresentem mo-                      trólise ígnea do cloreto de sódio?
bilidade. Então, para se fazer a eletrólise do
                                                               Deverão responder: sódio metálico (Na0) e
NaCl, este deverá ser fundido, na eletrólise                   gás cloro (Cl2(g)).
ígnea, ou dissolvido em água, na eletrólise da
                                                             f Em sua opinião, que reagentes permiti-
salmoura.
                                                               riam a obtenção do sódio metálico e do
   Lembre-os também de que eletrólises são                     gás cloro?
processos que usam energia elétrica para
                                                               Espera-se que os alunos não tenham dificul-
forçar oxirreduções que não aconteceriam                       dades para apontar os íons Na+ e Cl-.
espontaneamente. Deve-se discutir que são
processos úteis para a obtenção e a separa-                     Você pode apresentar então, as semirrea-
                                                             ções não-balanceadas:
ção de substâncias presentes na natureza.




         Representação da semirreação de redução:            Na+(l) + e–          Na0(l)
         Representação da semirreação de oxidação:           Cl–(l)               Cl2(g) + e–
         Representação da semirreação de reduçao:            Na+(l) + Cl–(l)      Na0(l) + Cl2(g)




f Você acha que essas semirreações são plausí-                  O estudo prossegue com a apresentação
  veis e podem explicar o processo? Explique.                do esquema de uma cuba de Downs, usada
                                                             para eletrólises ígneas do cloreto de sódio.
   Neste momento, explicite quais são os rea-                Caso se tenha optado por um estudo mais
gentes e quais são os produtos desta eletrólise              detalhado da eletrólise ígnea, pode-se apre-
e ressalte que, apesar das semirreações serem                sentar o esquema sem a identificação dos
representadas isoladamente, uma não ocorre                   cátodos e do ânodo e pedir aos alunos que
sem a outra, pois trata-se de uma oxirredução                os identifiquem. Este processo é usado in-
e não é possível a ocorrência de oxidação sem                dustrialmente para a obtenção do sódio me-
que haja redução. Precisa também relembrar                   tálico; o cloro seria quase um subproduto.
que os íons devem ter mobilidade para que                    A eletrólise da salmoura é um processo mais
possam se dirigir aos eletrodos e serem oxida-               barato para a obtenção do cloro gasoso.
dos ou reduzidos; NaCl fundido está no esta-                 Como o cloreto de sódio tem um ponto de
do líquido e apresenta, portanto, mobilidade.                fusão muito alto (804 oC), adiciona-se clore-
                                                             to de cálcio para abaixá-lo; a cuba é então
   Você pode pedir então, que as semirreações                operada a 600 oC.
sejam balanceadas.
     A eletrólise foi estudada no 4o bimestre da 2a série.
14